-
Horton McCarty ha publicado una actualización hace 1 dia, 3 horas
Efficiencies of artificial photosynthetic and photocatalytic systems depend on their ability to generate long-lived charge-separated (CS) states in photoinduced electron transfer (PET) reactions. PET, in most cases, is followed by an ultrafast back electron transfer, which severely reduces lifetime and quantum yield of CS states. Generation of a long-lived CS state is an important goal in the study of PET reactions. Herein, we report that this goal is achieved using a hierarchically self-assembled anthracene-methyl viologen donor-acceptor system. Anthracene linked to two β-cyclodextrin molecules (CD-AN-CD) and methyl viologen linked to two adamantane units (AD-MV2+-AD) form an inclusion complex in water, which further self-assembled into well-defined toroidal nanostructures. The fluorescence of anthracene is highly quenched in the self-assembled system because of PET from anthracene to methyl viologen. Irradiation of the aqueous toroidal solution led to formation of a long-lived CS state. Rational mechanisms for the formation of the toroidal nanostructures and long-lived photoinduced charge separation are presented in the paper.There is growing interest in creating solids that are responsive to various stimuli. Herein we report the first molecular-level mechanistic picture of the thermochromic polymorphic transition in a series of MAN-NI dyad crystals that turn from orange to yellow upon heating with minimal changes to the microscopic morphology following the transition. Detailed structural analyses revealed that the dyads assemble to create an alternating bilayer type structure, with horizontal alternating alkyl and stacked aromatic layers in both the orange and yellow forms. The observed dynamic behavior in the solid state moves as a yellow wavefront through the orange crystal. The overall process is critically dependent on a complex interplay between the layered structure of the starting crystal, the thermodynamics of the two differently colored forms, and similar densities of the two polymorphs. Upon heating, the orange form alkyl chain layers become disordered, allowing for some lateral diffusion of dyads within their own layer. Moving to either adjacent stack in the same layer allows a dyad to exchange a head-to-head stacking geometry (orange) for a head-to-tail stacking geometry (yellow). This transition is unique in that it involves a nucleation and growth mechanism that converts to a faster cooperative wavefront mechanism during the transition. The fastest moving of the wavefronts have an approximately 38° angle with respect to the long axis of the crystal, corresponding to a nonconventional C-H···O hydrogen bond network of dyad molecules in adjacent stacks that enables a transition with cooperative character to proceed within layers of orange crystals. The orange-to-yellow transition is triggered at a temperature that is very close to the temperature at which the orange and yellow forms exchange as the more stable, while being lower than the melting temperature of the original orange, or final yellow, solids.Organic light emitting devices (OLEDs), especially in a screen display format, present unique and interesting substrates for laser desorption/ionization-mass spectrometry imaging (LDI-MSI) analysis. These devices contain many compounds that inherently absorb light energy and do not require an additional matrix to induce desorption and ionization. OLED screens have lateral features with dimensions that are tens of microns in magnitude and depth features that are tens to hundreds of nanometers thick. Monitoring the chemical composition of these features is essential, as contamination and degradation can impact device lifetime. This work demonstrates the capability of LDI-MSI to obtain lateral and partial depth resolved information on multicolored OLED displays and suggests the application to other mixed organic electronics with minimal sample preparation. This was realized when analyzing two different manufactured OLEDs, in an active-matrix display format, without the need to remove the cathode. By utilizing low laser energy and high lateral spatial resolution imaging (10 μm), depth profiling can be observed while maintaining laterally resolved information, resulting in a three-dimensional MSI approach that would complement existing OLED characterization methods.We demonstrate that halogenated methane (HM) two-dimensional (2D)-terahertz-terahertz-Raman (2D-TTR) spectra are determined by the complicated structure of the instrument response function (IRF) along ω1 and by the molecular coherences along ω2. LC2 Experimental improvements have helped increase the resolution and dynamic range of the measurements, including accurate THz pulse shape characterization. Sum-frequency excitations convolved with the IRF are found to quantitatively reproduce the 2D-TTR signal. A new reduced density matrix model that incorporates sum-frequency pathways, with linear and harmonic operators, fully supports this (re)interpretation of the 2D-TTR spectra.Acute myocardial infarction (MI) is a cardiovascular disease that remains a major cause of morbidity and mortality worldwide despite advances in its prevention and treatment. During acute myocardial ischemia, the lack of oxygen switches the cell metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, Na+ and Ca2+ overload, and inhibition of myocardial contractile function, which drastically modifies the lipid, protein, and small metabolite profile in the myocardium. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In this work, we demonstrate an application of multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), which provided comprehensive molecular information in situ within the same mouse heart tissue sections with myocardial infarction. MALDI-IMS (at 30 μm per pixel) revealed infarct-associated spatial alterations of several lipid species of sphingolipids, glycerophospholipids, lysophospholipids, and cardiolipins along with the acyl carnitines. Further, we performed multimodal MALDI-IMS (IMS3) where dual polarity lipid imaging was combined with subsequent protein MALDI-IMS analysis (at 30 μm per pixel) within the same tissue sections, which revealed accumulations of core histone proteins H4, H2A, and H2B along with post-translational modification products, acetylated H4 and H2A, on the borders of the infarcted region. This methodology allowed us to interpret the lipid and protein molecular pathology of the very same infarcted region in a mouse model of myocardial infarction. Therefore, the presented data highlight the potential of multimodal MALDI imaging mass spectrometry of the same tissue sections as a powerful approach for simultaneous investigation of spatial infarct-associated lipid and protein changes of myocardial infarction.