• Dencker Toft ha publicado una actualización hace 9 horas, 37 minutos

    The present review provides an overview of the effects of light at nighttime on physiology and behavior in diurnal mammals, including humans. Knowing how the brain reacts to artificial light exposure, using diurnal rodent models, is fundamental for the development of new strategies in human health based in circadian biology.Epithelial to mesenchymal transition (EMT), which is characterized by the reduced expression of E-cadherin and increased expression of N-cadherin, plays an important role in the tumor invasion and metastasis. Classical Wnt signaling pathway has a tight link with EMT and it has been shown that nuclear translocation of β-catenin can induce EMT. This research has showed that genes that are involved in cadherin switch, CDH1 and CDH2, play a role in meningioma progression. Increased N-cadherin expression in relation to E-cadherin was recorded. In meningioma, transcription factors SNAIL, SLUG, and TWIST1 demonstrated strong expression in relation to E- and N-cadherin. The expression of SNAIL and SLUG was significantly associated with higher grades (p = 0.001), indicating their role in meningioma progression. Higher grades also recorded an increased expression of total β-catenin followed by an increased expression of its active form (p = 0.000). This research brings the results of genetic and protein analyzes of important molecules that are involved in Wnt and EMT signaling pathways and reveals their role in intracranial meningioma. The results of this study offer guidelines and new markers of progression for future research and reveal new molecular targets of therapeutic interventions.Human-robot collaboration is becoming ever more widespread in industry because of its adaptability. Conventional safety elements are used when converting a workplace into a collaborative one, although new technologies are becoming more widespread. This work proposes a safe robotic workplace that can adapt its operation and speed depending on the surrounding stimuli. The benefit lies in its use of promising technologies that combine safety and collaboration. Using a depth camera operating on the passive stereo principle, safety zones are created around the robotic workplace, while objects moving around the workplace are identified, including their distance from the robotic system. Passive stereo employs two colour streams that enable distance computation based on pixel shift. The colour stream is also used in the human identification process. Human identification is achieved using the Histogram of Oriented Gradients, pre-learned precisely for this purpose. The workplace also features autonomous trolleys for material supply. Unequivocal trolley identification is achieved using a real-time location system through tags placed on each trolley. The robotic workplace’s speed and the halting of its work depend on the positions of objects within safety zones. The entry of a trolley with an exception to a safety zone does not affect the workplace speed. This work simulates individual scenarios that may occur at a robotic workplace with an emphasis on compliance with safety measures. The novelty lies in the integration of a real-time location system into a vision-based safety system, which are not new technologies by themselves, but their interconnection to achieve exception handling in order to reduce downtimes in the collaborative robotic system is innovative.The purpose of this study was to determine the reliability and validity of plantar pressure and reaction force measured using the Moticon and Pedar-x sensor insoles while rowing on a Concept2 ergometer. Nineteen participants performed four 500 m trials of ergometer rowing at 22-24 strokes/min; two trials wearing Moticon insoles and two wearing Pedar-x insoles in a randomised order. Moticon and Pedar-x insoles both showed moderate to strong test-retest reliability (ICC = 0.57-0.92) for mean and peak plantar pressure and reaction force. Paired t-test demonstrated a significant difference (p 1.13), and Pearson’s correlation (r less then 0.37) showed poor agreement for all plantar pressure and reaction force variables. Compared to Pedar-x, the Moticon insoles demonstrated poor validity, however, the Moticon insoles had strong reliability. Due to poor validity, caution should be used when considering Moticon insoles to assess changes in pressure and force reliably over time, across multiple trials or sessions. Moticon’s wireless and user-friendly application would be beneficial for assessing and monitoring biomechanical parameters in rowing if validity between measures of interest and Moticon’s results can be established.

    Home treatment of patients affected by COVID-19 is still a matter of daily debate. During the clinical evolution of the disease, there are high risks of lung failure, which requires oxygen therapy. Here, we report our clinical experience with at-home treatment using high-flow nasal cannula in non-hospitalised patients with confirmed COVID-19.

    In this study, 18 patients with moderate-to-severe respiratory failure secondary to COVID-19 were monitored at home daily for temperature and SpO2 measurements. Other parameters such as saturation of peripheral oxygen (SpO2), SpO2/FiO2 (fraction of inspired oxygen), temperature, and lung performance were monitored periodically. Depending on oxygen requirements, the patients also received either standard oxygen via a face mask or, if higher FiO2 required, high-flow nasal cannula (HFNC).

    All 18 patients had favourable outcomes and recovered from COVID-19. No death was recorded in this group.

    Our clinical experience proves that high-flow nasal cannula oxygen therapy may be considered for at-home treatment of COVID-19 patients with moderate lung failure. TAK-981 This could be useful for further treatment during the pandemic and may also be considered in future epidemics.

    Our clinical experience proves that high-flow nasal cannula oxygen therapy may be considered for at-home treatment of COVID-19 patients with moderate lung failure. This could be useful for further treatment during the pandemic and may also be considered in future epidemics.