-
Schwarz Lowry ha publicado una actualización hace 11 horas, 1 minuto
The fast reaction kinetics, near-complete dissolution of manganese, and other associated metals in the nodule can be attributed to the participation of all intermediate products of glycerol oxidation in redox reactions with MnO2, enhancing the overall reduction leaching efficiency.Auxetic structure and tunable phase transitions are fascinating properties for future application. Herein, we propose two three-dimensional (3D) carbon honeycombs (CHC), known as Cmcm -CHC and Cmmm-CHC. Based on first-principles calculations, these novel 3D materials exhibit auxeticity with a fascinating negative Poisson’s ratio, which stems from (i) the puckered structure of Cmcm -CHC along the tube axis and (ii) significant change of angle-dominant deformation for Cmmm-CHC in the armchair direction. In addition, the moderate strain drives semimetal to semiconductor phase transition in CHCs, which thoroughly establishes its C-C bond formation. In the meantime, two new phases, namely P63/mmc-CHC and P6/mmm-CHC, form and exhibit semiconductor characteristics. Our results also show that Cmcm -CHC and P63/mmc-CHC are superhard materials. The outstanding negative Poisson’s ratio and phase transition properties make CHCs highly versatile for innovative applications in microelectromechanical and nanoelectronic devices.211At, an α-particle emitter, has recently attracted attention for radioimmunotherapy of intractable cancers. However, our sodium dodecyl sulfate polyacrylamide gel electrophoresis and flow cytometry analyses revealed that 211At-labeled immunoconjugates are easily disrupted. Luminol assay revealed that reactive oxygen species generated from radiolysis of water caused the disruption of 211At-labeled immunoconjugates. To retain their functions, we explored methods to protect 211At-immunoconjugates from oxidation and enhance their stability. Among several other reducing agents, sodium ascorbate most safely and successfully protected 211At-labeled trastuzumab from oxidative stress and retained the stability of the 211At-labeled antibody and its cytotoxicity against antigen-expressing cells for several days.Corn wet distillers’ fiber (corn fiber) is a byproduct of the corn-ethanol production process, with high potential as a precursor for activated carbon due to its moderate nitrogen content and availability. However, there has been limited investigation into activated carbons from the corn fiber. In this work, we produce activated carbons from the corn fiber using three procedures, including direct KOH activation, hydrothermal carbonization (HTC) followed by KOH activation, and FeCl3-catalyzed HTC followed by KOH activation. Catalytic HTC with FeCl3 was found to slightly increase the degree of carbonization relative to uncatalyzed HTC while also removing the nitrogen content at increasing concentrations and slightly increasing the porosity. The resulting activated carbon samples are then characterized by thermal gravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen analysis. The two-step process resulted in activated carbon with substantially higher surface areas than the one-step process (1220 vs 789 m2/g), as well as much higher thermal stability and nitrogen content (up to 1.20%). The results show that the corn fiber has potential for activated carbon production, with the two-step HTC followed by the activation process producing more favorable material properties than direct activation.In this work, based on the average free volume model, the correlation between the molar volume and the van der Waals volume V w for the ionic liquids (ILs) was derived. With this model, the density of pure ILs and binary and ternary mixtures of ILs over a wide range of temperature (278-473.15 K) can be calculated with good accuracy only with the information of the chemical components. A total number of 1859 data points of 41 pure ILs and IL mixtures based on imidazolium, pyridinium, pyrrolidinium, phosphonium, and ammonium cations were used to verify the model. For pure ILs and IL mixtures, the average absolute relative deviations (ARDs) are 1.04 and 1.19%, respectively. The overall discrepancies are less than 4%.Ce1-x O2x%Cu2+ nanobelts were bioinspired, designed, and fabricated using commercial filter papers as scaffolds by adding Cu(NO3)2 in the original sol solution of CeO2 nanobelts, which display excellent catalyst properties for CO oxidation and photocatalytic activity for organic dyes. Compared with pure CeO2, CuO belts were synthesized using the same method and the corresponding Ce0.5O250%Cu2+ bulk materials were synthesized without filter paper as scaffolds; the synthesized Ce1-x O2x%Cu2+ nanobelts, especially Ce0.5O250%Cu2+ nanobelts, can decrease the reaction temperature of CO to CO2 at 100 °C with the conversion rate of 100%, much lower than the formerly reported kinds of Ce1-x O2x%Cu2+ catalysts. Meanwhile, the synthesized Ce1-x O2x%Cu2+ nanobelts also display better photocatalytic activity for organic dyes. All of these results provide useful information for the potential applications of the synthesized Ce1-x O2x%Cu2+ nanobelts in catalyst fields.The broad-spectrum herbicide, glyphosate, is considered safe for animals because it selectively affects the shikimate pathway that is specific to plants and microorganisms. U0126 We sought a previously unknown mechanism to explain the concerns that glyphosate exposure can negatively affect animals, including humans. Computer modeling showed a probable interaction between glyphosate and eukaryotic translation elongation factor 1 subunit alpha 1 (eEF1α1), which was confirmed by microcalorimetry. Only restricted, nondisrupted spermatogenesis in rats was observed after chronic glyphosate treatments (0.7 and 7 mg/L). Cytostatic and antiproliferative effects of glyphosate in GC-1 and SUP-B15 cells were indicated. Meta-analysis of public health data suggested a possible effect of glyphosate use on sperm count. The in silico, in vitro, and in vivo experimental results as well as the metastatistics indicate side effects of chronic glyphosate exposure. Together, these findings indicate that glyphosate delays protein synthesis through an interaction with eEF1α1, thereby suppressing spermatogenesis and cell growth.